Project 836

Overview:

- Leading provider to power generation, transmission and distribution products; servicing steam turbines, steam valves and electric generators
- Radioactive turbine parts need cleaning and decontamination prior to conducting maintenance

Objective:

- Maintain radiation protection to surrounding personnel
- Remove as much low-level radiation on turbines and related stationary equipment as possible

Turbine Manufacturer:

Siemens

Substrate(s): stainless steel

Used: White Glass Bead

Sponge Media™

Considered Using:

#60 Aluminum Oxide

Chose Sponge-Jet Because:

- Media absorbs contamination without re-depositing it
- Dust suppression at the source of generation protects operators and staff inside containment from additional exposure

©2008 Sponge-Jet Inc. All rights reserved.

Low-Level Radioactive Decontamination "Before and After" Data — Turbine 1

Item Fixe	ed (Counts Before	s Per Minute) After	Decon Factor	Loose (Distintegrations/Min/100cm²) Before After	Free Release
Rotor	300	<100	3	<1000 <1000	√
Inner Cylinder Upper Half	300	<100	3	<1000 <1000	√
Lower Cylinder Half	300	<100	3	<1000 <1000	√
Gen End L/H Carrier #1	500	<100	5	<1000 <1000	√
Gen End RS Carrier #1	400	<100	4	<1000 <1000	√
Gen End Bracket	120	<100	1.2	<1000 <1000	1
Gov End Bracket	120	<100	1.2	<1000 <1000	√
TE RS Carrier #1	400	<100	4	<1000 <1000	√
RS Gov End L/H Flow guide	400	<100	4	<1000 <1000	√
Gov End RS Flow guide	200	<100	2	<1000 <1000	√
Gen End RS Flow guide	200	<100	2	<1000 <1000	√
LS Gen End Flow guide	400	<100	4	<1000 <1000	√
Gov End Blade Carrier #1	500	<100	5	<1000 <1000	1
Gen End Blade Carrier #2	400	<100	4	<1000 <1000	√

Low-Level Radioactive Decontamination "Before and After" Data - Turbine 2

Item Fix	c ed (Counts Before	Per Minute) After	Decon Factor	Loose (Distintegrations/Min/	100cm²) Free Release
Rotor	800	<100	8	<1000 <1000	√
Inner Cylinder Lower Half	800	<100	8	<1000 <1000	\checkmark
Diffuser	200	<100	2	<1000 <1000	√
Upper Cylinder Half	400	<100	4	<1000 <1000	√
Gen End RS Carrier #1	500	<100	5	<1000 <1000	√
Gov End Bracket	120	<100	1.2	<1000 <1000	\checkmark
Gov End Bracket	120	<100	1.2	<1000 <1000	√
TE RS Carrier #2	400	<100	4	<1000 <1000	√
Gov End Carrier #1	1100	<100	11	<1000 <1000	\checkmark
TE RS Flow Guide	400	<100	4	<1000 <1000	√
Gen End L/H Flow guide	400	<100	4	<1000 <1000	√
TE L/H Flow guide	400	<100	4	<1000 <1000	√
#69 Cross-over Diaphragm	700	<100	7	<1000 <1000	√
#70 Cross-over Diaphragm	500	<100	5	<1000 <1000	

Outcome:

- Radiological engineer reported a "100% success rate"
- Reported all breathing air samples as "clean"
- All blasted turbines and parts were tested and then designated as "free release"
- Sponge Media did not "migrate out" of the containment structure

"The biggest reward, from my point of view, (radiation protection) is the manner in which the Sponge-Jet Blast Media absorbs the contamination without re-depositing it on the material or floor or walls of our containment structure..."

Radiological Engineer

