Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>4</td>
</tr>
<tr>
<td>3.0</td>
<td>6</td>
</tr>
<tr>
<td>4.0</td>
<td>9</td>
</tr>
<tr>
<td>5.0</td>
<td>20</td>
</tr>
<tr>
<td>6.0</td>
<td>26</td>
</tr>
<tr>
<td>7.0</td>
<td>36</td>
</tr>
<tr>
<td>Notes</td>
<td>42</td>
</tr>
</tbody>
</table>
1.0 Introduction

Basic Components

1. Feed Unit Cyclone Storage Silo
2. 400-HP Pressure Vessel
3. Supply Line Connection
4. Control Panel
5. Recovery/Recycler Storage Silo
6. Vacuum Hose Connector
7. Lifting Eye
8. 50-P Sponge-Jet Recycler
9. Vacuum
10. Twinline Quick Connect Fittings
11. Waste Drums
Sub-Components

1. Blast Pressure Regulator Handle
2. Emergency Stop Button
3. Line Pressure Gauge
4. Media Feed Pressure Regulator Handle
5. Blast Pressure Gauge
6. Media Feed Pressure Gauge
7. Actuation Rate Indicator Eye
8. Exhaust Muffler
9. Exhaust Valve
10. Main Air Ball Valve
11. Primary Vacuum Air Ball Valve
12. Primary Recycler Air Ball Valve
13. Secondary Water Separator
14. On/Off Control Valve
15. Blast Pressure Regulator
16. Control Panel Moisture Separator
17. Choke Valve
18. Auger Tunnel End Cap
19. Air Motor Moisture Separator
20. Air Motor Lubricator
21. Clean Out Trap
22. Blast Hose Connection
Sub-Components (continued)

1. Vacuum Ejector
2. Vacuum Filter Silo
3. Vacuum Dust Bin
4. Handhole Cover
5. Crab Assembly
6. Pinch Valve and Cover
7. Filter Cleaning Lever
8. Media Actuator
9. Pop-up
10. Actuator Tree and Chain
11. Twinline
12. Blast Hose
13. Nozzle Holder
14. Nozzle
15. Deadman Handle
Recycler Sub-Components

1. Dome Lid & Upper Main Rim
2. Lower Main Rim
3. Vibratory Section
4. Safety Skirt
5. Pan Clamp
6. Pan Clamp Hook
7. Pressure Gauge
8. Secondary Recycler Air Ball Valve
9. Lubricator
10. Regulator
11. Air Filter
12. Bracket
13. Supply Line Connection
14. Reusable Media Downspout
15. Fine Particle Downspout
16. Large Particle Downspout
17. Muffler
18. Motor
2.0 Safety Checklist

- The Sponge-Jet Inc. Feed Unit is a pressurized system. Only trained operators should adjust, maintain and repair this equipment.
- Inbound pressure should never exceed 8.6 bar (125 psi).
- To prevent electrostatic buildup and possible electric discharge, the unit and work piece must be properly grounded / bonded.
- Operators and people in proximity to blasting should always wear eye and hearing protection with the appropriate respiratory equipment and clothing, which may depend on the type of coating or contaminant being removed.
- Never point the Blast Nozzle towards yourself or others.
- The use of non-Sponge-Jet Deadman handles may cause unintentional start-up and can result in personal injury.

Before Feed Unit Pressurization and Operation:
- Verify the Feed Unit is secure and stable.
- All pneumatic lines should be inspected for holes, wear and proper fit.
- The Handhole Cover must be in place and secure prior to and during operation.
- Safety pins and restraints should be fitted at all Air Supply Hose and Blast Hose couplings to prevent accidental disconnection.
- Do not operate without the Auger Chain Guard, Recycler Safety Skirt, and Pinch Valve Guard in place.

Before all activities (other than normal operation), ensure the entire system is depressurized.
3.0 Requirements

3.1 Air Supply / Compressor

Clean, dry compressed air must be supplied in adequate volume and pressure to accommodate the nozzle size at the desired pressure.

Inbound pressure is typically 8.6bar (125psi), minimum 6bar (85psi)

Note: High humidity environments require additional moisture separators.

(Metric) m³/min Requirements

<table>
<thead>
<tr>
<th>Nozzle Size</th>
<th>4.1bar</th>
<th>4.8bar</th>
<th>5.5bar</th>
<th>6.2bar</th>
<th>6.9bar</th>
<th>8.3bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 6 9.5mm 3/8 in</td>
<td>Nozzle: 3.6</td>
<td>4.0</td>
<td>4.6</td>
<td>4.9</td>
<td>5.5</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>B-VAC: 8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>Reserve: 2.3</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>Total: 14.0</td>
<td>14.5</td>
<td>15.1</td>
<td>15.6</td>
<td>16.3</td>
<td>17.1</td>
</tr>
<tr>
<td>No. 7 11mm 7/16 in</td>
<td>Nozzle: 4.8</td>
<td>5.5</td>
<td>6.1</td>
<td>6.8</td>
<td>7.2</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>B-VAC: 8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>Reserve: 2.6</td>
<td>2.7</td>
<td>2.8</td>
<td>3.0</td>
<td>3.1</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Total: 15.5</td>
<td>16.3</td>
<td>17.0</td>
<td>17.8</td>
<td>18.3</td>
<td>19.9</td>
</tr>
<tr>
<td>No. 8 12.5mm 1/2 in</td>
<td>Nozzle: 6.3</td>
<td>7.1</td>
<td>7.9</td>
<td>8.7</td>
<td>9.6</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>B-VAC: 8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>Reserve: 2.9</td>
<td>3.0</td>
<td>3.2</td>
<td>3.4</td>
<td>3.5</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>Total: 17.3</td>
<td>18.2</td>
<td>19.2</td>
<td>20.2</td>
<td>21.2</td>
<td>23.0</td>
</tr>
<tr>
<td>No. 10 15mm 5/8 in</td>
<td>Nozzle: 10.1</td>
<td>11.4</td>
<td>12.8</td>
<td>14.3</td>
<td>15.5</td>
<td>17.3</td>
</tr>
<tr>
<td></td>
<td>B-VAC: 8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>Reserve: 3.6</td>
<td>3.9</td>
<td>4.2</td>
<td>4.5</td>
<td>4.7</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>Total: 21.8</td>
<td>23.4</td>
<td>25.0</td>
<td>26.8</td>
<td>28.3</td>
<td>30.4</td>
</tr>
<tr>
<td>No. 12 18mm 3/4 in</td>
<td>Nozzle: 14.2</td>
<td>16.3</td>
<td>18.4</td>
<td>19.8</td>
<td>22.6</td>
<td>28.6</td>
</tr>
<tr>
<td></td>
<td>B-VAC: 8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>Reserve: 4.4</td>
<td>4.9</td>
<td>5.3</td>
<td>5.6</td>
<td>6.1</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>Total: 26.7</td>
<td>29.2</td>
<td>31.8</td>
<td>33.5</td>
<td>36.8</td>
<td>44.0</td>
</tr>
</tbody>
</table>
(Imperial) CFM Requirements

<table>
<thead>
<tr>
<th>Nozzle Size</th>
<th>Nozzle</th>
<th>B-VAC</th>
<th>Reserve</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 6 9.5mm 3/8in</td>
<td>126</td>
<td>285</td>
<td>82</td>
<td>493</td>
</tr>
<tr>
<td>60psi 4.1bar</td>
<td>143</td>
<td>285</td>
<td>86</td>
<td>514</td>
</tr>
<tr>
<td>70psi 4.8bar</td>
<td>161</td>
<td>285</td>
<td>89</td>
<td>535</td>
</tr>
<tr>
<td>80psi 5.5bar</td>
<td>173</td>
<td>285</td>
<td>92</td>
<td>550</td>
</tr>
<tr>
<td>90psi 6.2bar</td>
<td>196</td>
<td>285</td>
<td>96</td>
<td>577</td>
</tr>
<tr>
<td>100psi 6.9bar</td>
<td>220</td>
<td>285</td>
<td>101</td>
<td>606</td>
</tr>
<tr>
<td>No. 7 11mm 7/16in</td>
<td>170</td>
<td>285</td>
<td>91</td>
<td>546</td>
</tr>
<tr>
<td>60psi 4.1bar</td>
<td>194</td>
<td>285</td>
<td>96</td>
<td>575</td>
</tr>
<tr>
<td>70psi 4.8bar</td>
<td>217</td>
<td>285</td>
<td>100</td>
<td>602</td>
</tr>
<tr>
<td>80psi 5.5bar</td>
<td>240</td>
<td>285</td>
<td>105</td>
<td>628</td>
</tr>
<tr>
<td>90psi 6.2bar</td>
<td>254</td>
<td>285</td>
<td>108</td>
<td>652</td>
</tr>
<tr>
<td>100psi 6.9bar</td>
<td>300</td>
<td>285</td>
<td>117</td>
<td>617</td>
</tr>
<tr>
<td>No. 8 12.5mm 1/2in</td>
<td>224</td>
<td>285</td>
<td>102</td>
<td>611</td>
</tr>
<tr>
<td>60psi 4.1bar</td>
<td>252</td>
<td>285</td>
<td>107</td>
<td>644</td>
</tr>
<tr>
<td>70psi 4.8bar</td>
<td>280</td>
<td>285</td>
<td>113</td>
<td>678</td>
</tr>
<tr>
<td>80psi 5.5bar</td>
<td>309</td>
<td>285</td>
<td>119</td>
<td>713</td>
</tr>
<tr>
<td>90psi 6.2bar</td>
<td>338</td>
<td>285</td>
<td>125</td>
<td>748</td>
</tr>
<tr>
<td>100psi 6.9bar</td>
<td>392</td>
<td>285</td>
<td>135</td>
<td>812</td>
</tr>
<tr>
<td>No. 10 15mm 5/8in</td>
<td>356</td>
<td>285</td>
<td>128</td>
<td>769</td>
</tr>
<tr>
<td>60psi 4.1bar</td>
<td>404</td>
<td>285</td>
<td>138</td>
<td>827</td>
</tr>
<tr>
<td>70psi 4.8bar</td>
<td>452</td>
<td>285</td>
<td>147</td>
<td>884</td>
</tr>
<tr>
<td>80psi 5.5bar</td>
<td>504</td>
<td>285</td>
<td>158</td>
<td>947</td>
</tr>
<tr>
<td>90psi 6.2bar</td>
<td>548</td>
<td>285</td>
<td>167</td>
<td>1,000</td>
</tr>
<tr>
<td>100psi 6.9bar</td>
<td>611</td>
<td>285</td>
<td>179</td>
<td>1,075</td>
</tr>
<tr>
<td>No. 12 18mm 3/4in</td>
<td>500</td>
<td>285</td>
<td>157</td>
<td>942</td>
</tr>
<tr>
<td>60psi 4.1bar</td>
<td>575</td>
<td>285</td>
<td>172</td>
<td>1,032</td>
</tr>
<tr>
<td>70psi 4.8bar</td>
<td>650</td>
<td>285</td>
<td>187</td>
<td>1,122</td>
</tr>
<tr>
<td>80psi 5.5bar</td>
<td>700</td>
<td>285</td>
<td>197</td>
<td>1,182</td>
</tr>
<tr>
<td>90psi 6.2bar</td>
<td>800</td>
<td>285</td>
<td>197</td>
<td>1,302</td>
</tr>
<tr>
<td>100psi 6.9bar</td>
<td>1,010</td>
<td>285</td>
<td>259</td>
<td>1,554</td>
</tr>
</tbody>
</table>

3.2 Air Supply Requirements

Sponge-Jet Feed Units have a 50mm (2in) standard pipe typically fitted with a 50mm (2in) universal 4 lug coupling. The air supply hose should be fitted with a mating connector or replace both connectors as desired.
For supply hose up to 50m (150ft) use a Minimum Air Line Internal Diameter (I.D.) as listed below. For lengths 50 to 90m (150 to 300ft) use a minimum of one diameter size greater than listed below. Larger hoses decrease pressure loss.

NOTE: Occasionally a compressor is equipped with undersized outlets. The compressor air outlet should be no smaller than the recommended Supply diameters below.

<table>
<thead>
<tr>
<th>Nozzle Number/Orifice</th>
<th>Minimum Air Line I.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>#6 - 9.5mm (3/8in)</td>
<td>50mm (2in)</td>
</tr>
<tr>
<td>#7 - 11mm (7/16in)</td>
<td>50mm (2in)</td>
</tr>
<tr>
<td>#8 - 12.5mm (1/2in)</td>
<td>64mm (2 ½ in)</td>
</tr>
<tr>
<td>#10 - 16mm (5/8in)</td>
<td>76mm (3in)</td>
</tr>
<tr>
<td>#12 - 19mm (3/4in)</td>
<td>76mm (3in)</td>
</tr>
</tbody>
</table>

3.3 Hoses

Blast Hose

Sponge Media abrasive has been successfully blasted through 90m (300ft) of Blast Hose. However, when choosing between long Air Supply Line and long Blast Hoses, keep the Blast Hoses as short as practical. Below are recommended maximum lengths of blast hoses:

- Up to 15m (50ft) use 32mm (1.25in) I.D. Whipline connected to the machine or to a blast hose extension.
- Extensions up to 30m (100ft) must have a minimum 32mm (1.25in) I.D.
- Extensions over 30m (100ft) shall use a minimum 38mm (1.5in) I.D. Blast Hose Extension. Larger hoses decrease pressure loss.

Vacuum Hose

B-VAC’s have successfully recovered Sponge Media at distances in excess of 100m (330ft). When operating at these distances, optimum performance is achieved by having the largest diameter vacuum hose closest to the B-VAC and smaller diameter hose near the pick up location. Long runs of small hose may result in reduced pick up pressures and high wear in the hose. Optimum hose configuration starting at the B-VAC is:

- 20 meters (65ft) of 88mm (3.5in) diameter hose connected to 40 meters (130ft) of 76mm (3in) hose connected to 40 meters (130ft) of 63mm (2.5in) hose.

NOTE: Vacuum hoses operate best when running horizontally and or vertically – gradual slopes (like stairs) should be avoided.
3.4 Ambient Temperature

Ambient temperature should be above 0° Celsius (32° Fahrenheit).
Otherwise:

a) Use winter grade pneumatic tool oil in lubricator.

b) Minimize moisture in supply air.

c) Ice build-up in the controls or vessel may require thawing prior to restarting machine. Bearing grease will thicken in cold environments requiring use of low temperature grease. Warming the unit prior to operation may be required. Minimize down time that might result in freezing.

3.5 Containment

Containment is an integral part of the Sponge-Jet process, as Sponge-Jet Sponge Media is recyclable. To take advantage of this property, containment must be used to capture and recycle Sponge Media.

Sponge-Jet is easily containable with light plastic sheeting or mesh. Projects involving hazardous materials, high wind load or other conditions may require more complex containment and negative air dust collection.

Pre-cleaning of the area will minimize both dust and debris which can also cause equipment malfunctions.

Always follow local, state and federal guidelines concerning proper containment, containment ventilation and monitoring procedures.
4.0 Operation

Before Pressurization and Operation:
- All pneumatic lines should be inspected for holes, wear and proper fit.
- The Handhole Cover must be in place and secure prior to and during operation.
- Safety pins and restraints should be fitted at all Air Supply Hose and Blast Hose couplings to prevent accidental disconnection.
- Do not operate without the Auger Chain Guard, Recycler Safety Skirt, and Pinch Valve Guard in place.
- Before all activities (other than normal operation), ensure the entire system is depressurized.

Attach Handhole Cover with gasket in place.

Connect Vacuum Hose from the Large Particle Downspout and the Fine Particle Downspout to each Waste Drum. Check contents of Waste Drums, remove stored items. Replace or empty drums when 2/3’s full.

Connect outbound Vacuum Hose to Recycler Cyclone Storage Silo.
Check **Pan Clamps** for tightness. They should not exceed 14kg (30lbs.) each at the end of the lever handle. Adjust by turning the **Pan Clamp Hook**.

Insert Whipline through **Pinch Valve**; connect **Blast Hose** and secure with safety pins.

Connect Return and Supply **Twinline Quick Connect Fittings**.

Ensure the **Emergency Stop Button** is pushed in (off).
Inspect and clean Exhaust Muffler.

Ensure adequate tool oil is visible in the Recycler Lubricator as well as the Auger Air Motor Lubricator (bottom of pressure vessel).

Check Main Air Ball Valve, Primary Vacuum Air Ball Valve and Primary Recycler Air Ball Valve are closed.

Check Secondary Vacuum Air Ball Valve, Secondary Recycler Air Ball Valve, and Choke Valve are open.
Connect the **Supply Line** and secure with safety pins and restraints.

Charge Supply Line. Open **Main Air Ball Valve**

Open **Primary Vacuum Air Ball Valve** and **Primary Recycler Air Ball Valve**

Attach vacuum hose to **Recycler By-Pass Inlet**.
Load by vacuuming new or recycled Sponge Media as required, remove hose from **By-Pass Valve** and secure Inlet.

NOTE: A typical full charge fills the **400 HP Pressure Vessel** and the **Feed Unit Cyclone Storage Silo** to 2/3 full (the top of the **Silo Actuator**, approximately 15 bags of media total).

During operation add approximately 1 bag per hour.

DO NOT OVERFILL.

To begin blasting, pull out the **Emergency Stop Button** (on) and unlock **Deadman Handle** by depressing safety flap.

Depress **Deadman Handle** and wait 5 to 10 seconds for Sponge Media to flow. Do not cycle the handle on and off as it will create a plug in the hose.
Allow pressure gauges to stabilize then adjust **Blast Pressure** and **Media Feed Pressure** to the desired levels.

Typical Media Feed Pressures

<table>
<thead>
<tr>
<th>Nozzle Size</th>
<th>Sponge Media Recycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 – 3</td>
</tr>
<tr>
<td></td>
<td>Bar</td>
</tr>
<tr>
<td>#7 10mm 7/16in</td>
<td>2.0</td>
</tr>
<tr>
<td>#8 12mm 1/2in</td>
<td>2.8</td>
</tr>
<tr>
<td>#10 15mm 5/8in</td>
<td>3.4</td>
</tr>
<tr>
<td>#12 18mm 3/4in</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Confirm **Manual Rotation Knob** is rotating.

Confirm **Air Motor Lubricator** rate is 1-2 drops per minute.

Confirm **Actuation Rate Indicator** eye is functioning - by seeing it cycle between black and green.
Operating Tips:

- Check the top screen of Recycler for obstructions (duct tape, paint chips, etc).
- When vacuuming the air/media ratio should be at least 60%/40%. Avoid rapid vacuuming of media, especially on long runs.
- Continuously monitor the quantity of material in waste drums and storage silos to avoid overflow.
- Add new media at approximately 1 bag per hour to maintain a uniform working media mix.
- Monitor levels in both lubricators.
- Avoid vacuuming foreign objects/debris which may create clogs or equipment jams.
- Inspect and monitor for vacuum and system leaks.
- Monitor both storage silo viewing ports to avoid over-filling silos.
- Cycle the Vacuum Filter Cleaning Lever once every 2 hours.
- Never vacuum water or other liquids – it will destroy the vacuum filter.
4.2 Shut Down of the B-Vac Pro

Normal shutdown during operation is by releasing **Deadman Handle**. Alternatively the **Emergency Stop** Button may be used.

Note: During inspection, maintenance or any non-operational activity, always shut off (push in) **Emergency Stop** Button.

4.3 End of Shift Shut Down

Turn **Media Feed** to “Zero”, then depress the **Deadman Handle** until Sponge Media stops flowing through the nozzle (typically 15-45 seconds).

Push **Emergency-Stop** Button.

Vacuum all remaining media from containment area.

Allow all media to process through **Recycler** into **Feed Unit Cyclone Storage Silo** until no Sponge Media is visible.

Close the **Primary Recycler Air Ball Valve**.
On certain models, clean the **Vacuum** filter by cycling the **Filter Cleaning Lever** down and then back up.

Models without this lever automatically clean the filter at each shut down of the **Vacuum**.

Shut down **Air Supply** or alternatively the **Main Air Ball Valve**.

Confirm all gauges read “zero”.

Close both the **Main Air Ball Valve** and the **Primary Vacuum Air Ball Valve**
5.0 Maintenance

Routine maintenance is required to provide long and reliable equipment life. The B-Vac must be shut down and fully depressurized prior to any maintenance.

5.1 Prior to each use:

- Inspect the **Blast Nozzle** for wear.
 Once the nozzle throat has worn 1.5mm (1/16in) beyond its original intended diameter, it should be replaced.

- Thoroughly inspect **Blast Hose** and **Vacuum Hose** components and connections.
 Replace hose. Ensure all couplings are properly equipped with coupling gaskets, safety pins and hose restraints.

- Inspect and clean **Exhaust Muffler**. Replace when exhaust is slow.

Remove any accumulated media in the **Exhaust Muffler** and reinstall.
WARNING: Do no operate equipment without **Exhaust Muffler** in place.
5.2 To be performed every 2 hours of operation

Lubricators

Check the pneumatic oil level in **Lubricators**.

Refill with pneumatic tool oil through the fill port on top as required.
The Vacuum

If the Vacuum differential pressure is >0.1bar, increase frequency of filter cleaning.

On certain models, clean the Vacuum filter by cycling the Filter Cleaning Lever down and then back up.

Models without this lever automatically clean the filter at each shut down of the Vacuum.

If purging the filter does not lower the readings to below 0.1bar a filter replacement is necessary. Efforts to maintain the filter from excessive buildup, and the suction of liquids, will extend the Vacuum filter service life.
5.3 To be performed after every 80 hours of operation:

Remove the lower, threaded portion of the Secondary Water Separator, Control Panel Moisture Separator and Air Motor Moisture Separator and inspect the interior and O-Ring.

Remove any contaminants, replace O-Ring if needed and reinstall.

5.4 Performed monthly (or as needed):

IMPORTANT: Under NO circumstances should any inspection, adjustment or lubrication be conducted while running or connected to an air supply.

Auger Chain

Remove the Auger Chain Guard and inspect the condition of the Auger Drive Chain. Apply lightweight lubricating oil as necessary then replace the Auger Chain Guard.
Bearing Grease

This unit was greased before shipment. Add grease using a half pump (or small amount) every 500 hours of operation. If the unit has not been used for one year, add 1 to 2 pumps of grease. Use quality NLGI #2 grease such as:

- Citco AP, Citco oil
- Ore-Lube K2
- Mobilux, Mobil Oil Co.
- Socony, Mobil Oil Co.
- Val-Lith #IP, Valvoline Co.
- VS SGA, MM Industries, Inc.
- Multifak #2, Texaco Inc.
- Alvanie R#, Shell Oil Co.

The two bearings should be greased by fittings on the side of the machine.

DO NOT OVERGREASE.

The Vacuum

- Check Vacuum suction while vacuum is operating.
- Allow all hose to clear of media so the flow is air only.
- Seal the hose end.
- Allow Vacuum level to stabilize.

Vacuum level should approach 3800mm WC (11 in of Hg).

If less than 70% of this reading, check for system leaks, confirm air supply to the Vacuum while running is between 6-8bar (90 –115psi), check filter performance and inspect for damage.
Recycler Assembly

Should the Recycler require disassembly to clear an obstruction, replace a gasket, or other maintenance, it is important to reassemble the components as illustrated.

NOTE: Failure to properly assemble and fasten the Sieve Assembly will dramatically shorten its operating life.

Assemble as follows:

1. Place the Fine Particle Downspout through the hole provided in the Vibratory Section. Note: Be sure the downspout is centered.
2. Place a Flat Gasket into the Shallow Funnel.
3. Place the Bottom Screen (#16* mesh) onto the Flat Gasket. IMPORTANT: Place with mesh screen side up**
4. Place a Flat Gasket onto the mesh of the Bottom Screen.
5. Place the Main Rim over the Flat Gasket.
6. Place a Flat Gasket into the top of the Main Rim.
7. Place the Top Screen (#3* mesh) into the Main Rim and on top of the Flat Gasket. IMPORTANT: Place mesh screen side up**
8. Place a Flat Gasket onto the Top Screen, making sure to center the Flat Gasket.
9. Place the Hopper over the Flat Gasket.
10. Attach all Pan Clamps. These must be adjusted properly to secure the Sieve Assembly (refer to 4.0 Operation).

*Top Screen standard size is #3; Bottom Screen standard size is #16 unless other sizes are specified or provided.

**Screens must be assembled with mesh side up. Incorrect assembly will cause poor operation.
6.0 Troubleshooting

6.1 Feed Unit:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit does not operate when Deadman Handle is depressed</td>
<td>Check Main Air Ball Valve is open.</td>
</tr>
<tr>
<td></td>
<td>Check Emergency Stop Button is pulled out.</td>
</tr>
<tr>
<td></td>
<td>Check Twin Line Quick Connect Fittings are connected and secure.</td>
</tr>
<tr>
<td></td>
<td>Check for damage to Twin Line.</td>
</tr>
<tr>
<td></td>
<td>Check Line Pressure is above 1 bar (15 psi) when Deadman is depressed.</td>
</tr>
</tbody>
</table>
Unit does not operate when Deadman Handle is depressed (Continued)

Remove red air line from Exhaust Valve; hold it securely, then depress Deadman Handle.

IF no air is felt exiting red air line, trace air flow operation through Twinline and Deadman Handle checking for obstructions or leaks.

IF air is felt exiting red air line, place thumb on opening of red air line and depress Deadman Handle.

IF unit starts (air exits nozzle) depressurize unit and replace Exhaust Valve Diaphragm.

IF unit does not start, with thumb still blocking red air line, check Actuation Rate Indicator Eye is cycling.

IF cycling, troubleshoot, repair or replace Blast Pressure Regulator.

IF not cycling, replace On/Off Control Valve.
Air will not stop exiting nozzle when Deadman Handle is released

Push Emergency Stop Button (in).

If unit stops, likely problems are:

1. Incorrect Deadman. Replace with Sponge-Jet Deadman.

2. Twinline air lines from unit to Deadman have been reversed.

3. Deadman is broken; replace with Sponge-Jet Deadman.

If Unit does not stop, likely problems are:

1. On/Off Control Valve is malfunctioning.

2. Exhaust Valve Diaphragm is damaged.
<table>
<thead>
<tr>
<th>Air Motor sticks during startup; becomes sluggish at lower Media Pressures</th>
<th>Check Air Motor Lubricator oil level and oil lubrication rate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auger will not begin rotating</td>
<td>Confirm Media Feed Pressure Gauge reads consistently with “Typical Media Feed Pressure” chart on Control Panel</td>
</tr>
<tr>
<td></td>
<td>Turn Manual Rotation Knob Regulator Handle clockwise to start the rotation.</td>
</tr>
<tr>
<td></td>
<td>If excessive force is required, clear obstruction (see next section).</td>
</tr>
</tbody>
</table>
Auger stops rotating during normal operation

1. Release **Deadman Handle** and depressurize unit.

2. Close **Main Air Ball Valve**.

3. Depress **Emergency Stop** Button.

4. Remove **Clean Out Trap**; rotate **Manual Rotation Handle** clockwise and counter-clockwise until obstruction falls out. **Auger** should move smoothly. Replace **Clean Out Trap**.

5. If obstruction cannot be cleared:
 a. Remove **Auger Chain Guard and Chain**.
 b. Remove four screws, pull **Auger** from shaft and remove obstruction.
 c. Reassemble **Auger**; test for smooth rotation.
 d. Re-install **Auger Chain Guard and Chain**.
| **Air flow through nozzle suddenly stops** | 1. Do not restart. Depress **Emergency Stop** Button immediately. Depressurize unit and close **Main Air Ball Valve**. |
| | |
| | 2. Remove **Blast Nozzle** from **Blast Hose**; inspect for and remove obstructions. |
| | 3. Disconnect all **Blast Hose** connections; inspect for and remove obstructions. |
| | 4. Remove **Auger Tunnel End Cap**; check for and remove obstructions. Replace **Auger Tunnel End Cap**. |
| | 5. If obstruction was from Sponge Media, turn **Media Feed Pressure** to 0bar(0psi). Check **Choke Valve** is in full open position; or parallel to pipe. Resume blasting. When stream of air without Sponge Media is achieved, slowly return **Media Feed Pressure** Gauge to desired pressure. |
| **Too much Sponge Media exits Nozzle or is pulsing** | 1. Check **Choke Valve** is in full open position; or parallel to pipe. |
| | 2. Check **Media Feed Pressure** Gauge below 3.4bar(50psi). Resume Blasting. |
Blast Pressure increases and decreases continuously or Unit exhausts intermittently while blasting

1. Check for damage to **Twin Line** and for air leaks at all fittings and connections. Repair, replace or tighten as necessary.

2. Remove **Exhaust Valve Cover**, inspect for and remove obstructions. Check **Exhaust Diaphragm** for rips or small holes. Clean or replace as necessary.
Air flows through Nozzle without Sponge Media while Auger is rotating

After depressing Deadman, Sponge Media flow through Nozzle can take up to ±15 seconds with normal hose length. Stabilized Sponge Media flow can take up to ±4 minutes.

1. Check for adequate Sponge Media amount in Pressure Vessel.
2. Check Agitation Rate Indicator Eye is cycling between black and green every few seconds while machine is pressurized and Deadman Handle is depressed.

If Agitation Rate Indicator Eye is cycling, depressurize unit, open Handhole Cover and check Media Actuator and Actuator Tree and Chain are attached. Reconnect if necessary and look for obstruction in bottom of Pressure Vessel.

If Actuation Rate Indicator Eye is not cycling, enter Diagnostic Mode.

Diagnostic Mode:

1. Turn Blast Pressure Regulator Handle “off” by rotating until it removes from Control Panel.
2. Turn Media Feed Pressure Regulator Handle “off” by rotating until it removes from Control Panel.
3. Remove Handhole Cover and Sponge Media so Actuator Tree and Chain are visible.
4. Actuator Tree and Chain should be alternating <90° every 2-4 second - depending on initial setting.

If Actuator Tree and Chain are cycling, then Agitation Rate Indicator Eye may need replacement – but should not effect overall operation.

Shut off unit and inspect for obstructions in the bottom of Pressure Vessel and pipe feeding Auger.

If Actuator Tree and Chain are not cycling, then…

Remove top orange output airline on Desiccant Filter, depress Deadman Handle; check top of Desiccant Filter for continuous airflow.
<table>
<thead>
<tr>
<th>Air flows through Nozzle without Sponge Media while Auger is rotating (Continued)</th>
<th>If no airflow is felt from the top of Desiccant Filter, replace Desiccant Filter matching airline positions prior to removal. It is necessary to switch airline fittings from old filter to new. Re-check top of Desiccant Filter for continuous airflow. Check cycling of Agitation Rate Indicator Eye and for light pulse of air exiting Timer. Confirm Timer is set to 2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>If Agitation Rate Indicator Eye and Timer test successfully, resume blasting. If no light pulse of air is exiting top of Timer, then… Remove two nuts from Timer base, then remove screws from Timer face; replace the Timer, matching airline positions prior to removal. Confirm proper motion of Agitation Indicator Eye and Actuator Tree Assembly.</td>
<td></td>
</tr>
</tbody>
</table>
6.2 Recycler:

| **Unit won’t turn on or vibration is slow** | Confirm **Pressure Gauge** reads between 2.5-2.8bar(35-40psi).

- **If unit temperature is** near freezing or below,
 a) Warming the unit prior to operation may be required.
 b) Use winter grade pneumatic tool oil in lubricator.
 c) Minimize moisture in supply air.

- **If vibration is slow but unit is operating**, run without Sponge Media until vibration normalizes. |

| **Sponge Media is exiting Large Particle Downspout** | Confirm **Top Screen** is properly installed and free of debris. |

| **When Blasting, excessive amounts of dust are observed** | Confirm **Bottom Screen** is properly installed. Additional dust reduction can be achieved by:

1. Passing Sponge Media through unit again.
2. Using a smaller number **Bottom Screen** (with larger wire spacing). |
7.0 Drawings
NOTE 1. USE REMOVABLE THREADED PLUNGER WHEN BOLTING.